172 research outputs found

    The Large-scale Distribution of Cool Gas around Luminous Red Galaxies

    Full text link
    We present a measurement of the correlation function between luminous red galaxies and cool gas traced by Mg II \lambda \lambda 2796, 2803 absorption, on scales ranging from about 30 kpc to 20 Mpc. The measurement is based on cross-correlating the positions of about one million red galaxies at z~0.5 and the flux decrements induced in the spectra of about 10^5 background quasars from the Sloan Digital Sky Survey. We find that: (i) This galaxy-gas correlation reveals a change of slope on scales of about 1 Mpc, consistent with the expected transition from a dark matter halo dominated environment to a regime where clustering is dominated by halo-halo correlations. Assuming that, on average, the distribution of Mg II gas follows that of dark matter up to a gas-to-mass ratio, we find the standard halo model to provide an accurate description of the gas distribution over three orders of magnitude in scale. Within this framework we estimate the average host halo mass of luminous red galaxies to be about 10^{13.5} M_solar, in agreement with other methods. We also find the Mg II gas-to-mass ratio around LRGs to be consistent with the cosmic value estimated on Mpc scales. Combining our galaxy-gas correlation and the galaxy-mass correlation function from galaxy-galaxy lensing analyses we can directly measure the Mg II gas-to-mass ratio as a function of scale and reach the same conclusion. (ii) From line-width estimates, we show that the velocity dispersion of the gas clouds also shows the expected 1- and 2-halo behaviors. On large scales the gas distribution follows the Hubble flow, whereas on small scales we observe the velocity dispersion of the Mg II gas clouds to be lower than that of collisionless dark matter particles within their host halo. This is in line with the fact that cool clouds are subject to the pressure of the virialized hot gas.Comment: 18 pages, 11 figures, 1 table, submitted to MNRA

    APOGEE Kinematics I: Overview of the Kinematics of the Galactic Bulge as Mapped by APOGEE

    Full text link
    We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the mid-plane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes 0 deg < l < 65 deg, and primarily across latitudes of |b| < 5 deg in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very centre of the bulge, with the smallest gradients in both kinematic and chemical space inside the inner-most region (l,|b|) < (5,5) deg. The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of |b| < 2 deg appears to have a corresponding signature in [Fe/H] and [alpha/Fe]. Stars with [Fe/H] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,|b|) < (15,12) deg out into the disk for stars with [Fe/H] > -1.0, and the chemodynamics across (l,b) suggests the stars in the inner Galaxy with [Fe/H] > -1.0 have an origin in the disk.Comment: Accepted by ApJ 15 December 201

    The Sloan Digital Sky Survey Reverberation Mapping Project: Ensemble Spectroscopic Variability of Quasar Broad Emission Lines

    Get PDF
    We explore the variability of quasars in the MgII and Hbeta broad emission lines and UV/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 66 months, containing 357 quasars with MgII and 41 quasars with Hbeta . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 28542854 quasars with MgII and 572 quasars with Hbeta. The MgII emission line is significantly variable (Δf/f\Delta f/f 10% on 100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳5\gtrsim 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a ή\delta-function. Hbeta is more variable than MgII (roughly by a factor of 1.51.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1<z<21<z<2 quasars.Comment: 20 pages, 25 figures. ApJ accepted: minor revisions following referee repor

    Close companions around young stars

    Get PDF
    Multiplicity is a fundamental property that is set early during stellar lifetimes, and it is a stringent probe of the physics of star formation. The distribution of close companions around young stars is still poorly constrained by observations. We present an analysis of stellar multiplicity derived from APOGEE-2 spectra obtained in targeted observations of nearby star-forming regions. This is the largest homogeneously observed sample of high-resolution spectra of young stars. We developed an autonomous method to identify double lined spectroscopic binaries (SB2s). Out of 5007 sources spanning the mass range of ∌\sim0.05--1.5 \msun, we find 399 binaries, including both RV variables and SB2s. The mass ratio distribution of SB2s is consistent with a uniform for q0.95q0.95. The period distribution is consistent with what has been observed in close binaries (<10<10 AU) in the evolved populations. Three systems are found to have q∌q\sim0.1, with a companion located within the brown dwarf desert. There are not any strong trends in the multiplicity fraction (MF) as a function of cluster age from 1 to 100 Myr. There is a weak dependence on stellar density, with companions being most numerous at ÎŁâˆ—âˆŒ30\Sigma_*\sim30 stars/pc−2^{-2}, and decreasing in more diffuse regions. Finally, disk-bearing sources are deficient in SB2s (but not RV variables) by a factor of ∌\sim2; this deficit is recovered by the systems without disks. This may indicate a quick dispersal of disk material in short-period equal mass systems that is less effective in binaries with lower qq.Comment: 25 pages, 20 figures. Accepted to A

    Evolution of Star-forming Galaxies from z=0.7 to 1.2 with eBOSS Emission-line Galaxies

    Get PDF
    We study the evolution of star-forming galaxies with 10 10 M ⊙ < M ∗ < 10 11.6 M ⊙ over the redshift range of 0.7 < z < 1.2 using the emission-line galaxies (ELGs) in the extended Baryon Oscillation Spectroscopic Survey (eBOSS). By applying the incomplete conditional stellar mass function (SMF) model proposed in Guo et al., we simultaneously constrain the sample completeness, the stellariVhalo mass relation (SHMR), and the quenched galaxy fraction. We obtain the intrinsic SMFs for star-forming galaxies in the redshift bins of 0.7 < z < 0.8, 0.8 < z < 0.9, 0.9 < z < 1.0, and 1.0 < z < 1.2, as well as the SMF for all galaxies in the redshift bin of 0.7 < z < 0.8. We find that the eBOSS ELG sample only selects about 1%-10% of the star-forming galaxy population at the different redshifts, with the lower redshift samples more complete. There is only weak evolution in the SHMR of the ELGs from z = 1.2 to z = 0.7, as well as the intrinsic galaxy SMFs. Our best-fitting models show that the central ELGs at these redshifts live in halos of mass M ∌ 10 12 M ⊙ , while the satellite ELGs occupy slightly more massive halos of M ∌ 10 12.6 M ⊙ . The average satellite fraction of the observed ELGs varies from 13% to 17%, with the galaxy bias increasing from 1.1 to 1.4 from z = 0.7 to 1.2

    The Sloan Digital Sky Survey Reverberation Mapping Project : systematic investigations of short-timescale CIV broad absorption line variability

    Get PDF
    We systematically investigate short-timescale (<10-day rest-frame) Civ broad absorption-line (BAL) variability to constrain quasar-wind properties and provide insights into BAL-variability mechanisms in quasars. We employ data taken by the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project, as the rapid cadence of these observations provides a novel opportunity to probe BAL variability on shorter rest-frame timescales than have previously been explored. In a sample of 27 quasars with a median of 58 spectral epochs per quasar, we have identified 15 quasars (55+18−14%), 19 of37 Civ BAL troughs (51+15−12%), and 54 of 1460 epoch pairs (3.7±0.5%) that exhibit significant CivBAL equivalent-width variability on timescales of less than 10 days in the quasar rest frame. These frequencies indicate that such variability is common among quasars and BALs, though somewhat rare among epoch pairs. Thus, models describing BALs and their behavior must account for variability on timescales down to less than a day in the quasar rest frame. We also examine a variety of spectral characteristics and find that in some cases, BAL variability is best described by ionization-state changes, while other cases are more consistent with changes in covering fraction or column density. We adopt a simple model to constrain the density and radial distance of two outflows appearing to vary by ionization-state changes, yielding outflow density lower limits consistent with previous work.PostprintPeer reviewe

    High-resolution, H band Spectroscopy of Be Stars with SDSS-III/APOGEE: I. New Be Stars, Line Identifications, and Line Profiles

    Get PDF
    APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.Comment: accepted in A

    Update on the Nature of Virgo Overdensity

    Full text link
    We use the Eighth Data Release of Sloan Digital Sky Survey (SDSS DR8) catalog with its additional sky coverage of the southern Galactic hemisphere, to measure the extent and study the nature of the Virgo Overdensity (VOD; Juric et al. 2008). The data show that the VOD extends over no less than 2000 deg^2, with its true extent likely closer to 3000 deg^2. We test whether the VOD can be attributed to a tilt in the stellar halo ellipsoid with respect to the plane of the Galactic disk and find that the observed symmetry of the north-south Galactic hemisphere star counts excludes this possibility. We argue that the Virgo Overdensity, in spite of its wide area and cloud-like appearance, is still best explained by a minor merger. Its appearance and position is qualitatively similar to a near perigalacticon merger event and, assuming that the VOD and the Virgo Stellar Stream share the same progenitor, consistent with the VSS orbit determined by Casetti-Dinescu et al. (2009).Comment: 9 pages,6 figures; accepted for publication in A
    • 

    corecore